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LETTER TO THE EDITOR 

Polygons and stars in a slit geometry 

C E Soteros and S G Whittington 
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1Al 

Received 2 June 1988 

Abstract. We consider self-avoiding polygons, uniform 3-stars and uniform 4-stars, weakly 
embeddable in the square lattice and confined between two parallel lines, y = 0 and y = L. 
We show rigorously that the connective constants of these three structures (provided that 
the corresponding limits exist) are all strictly less than the connective constant K ( L )  of 
self-avoiding walks with the same geometrical constraint. We also derive lower bounds 
on the connective constants of uniform 3-stars and 4-stars. These bounds appear to be 
strong, at least for small L. 

The numbers of self-avoiding walks, polygons and uniform stars with f branches, 
weakly embeddable in the d-dimensional hypercubic lattice, are all known to grow 
exponentially with the total number of edges in the graph and to have the same 
connective constant (Hammersley 1962, Wilkinson er a1 1986). These structures are 
interesting models of linear, ring and star polymers and studies of the effects of various 
geometrical constraints on their behaviour have provided useful information about 
polymers confined in slits, slabs and tubes (Daoud and de Gennes 1977, Wall er a1 
1977, Wall and Klein 1979, Klein 1980, Hammersley and Whittington 1985, Chee and 
Whittington 1987). 

We first state some results on the d-dimensional hypercubic lattice. This is the set 
of integer points, with coordinates (x, . . . , y ) ,  in R d  and the set of edges joining pairs 
of points unit distance apart. Let cn(L) ,  p , ( L )  and s,(f, L) be the numbers of n-edge 
self-avoiding walks, n-edge (unrooted) polygons and uniform f-stars with n edges in 
each branch, weakly embeddable in the d-dimensional hypercubic lattice, confined to 
lie between or in the (d-1)-dimensional hyperplanes y = 0 and y = L. Two configur- 
ations are counted as distinct if they differ by translation in the y direction and as the 
same if they differ only by translation in any other coordinate directions. 

For d > 2, the connective constant for any f-star, defined by 

n-ai. lim (nf)-’ log s,(J L) = K ( J  L) (1) 

is independent o f f  and so equal to that ( K ( L ) )  for a self-avoiding walk (Chee and 
Whittington 1987). The connective constant for a polygon, defined by 

(2) n-m lim n-’ log p n  ( L) = K ~ (  L )  

can be shown to be equal to that for a walk, using arguments along the lines of those 
in Hammersley (1962). 
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When d = 2 the situation appears to be quite different. Klein (1980) has calculated 
K ( L )  and K ~ (  L )  explicitly for L s 6, using transfer matrix methods, and it appears that 
K ~ ( L ) <  K ( L ) .  Similarly Chee and Whittington (1987) have calculated ~ ( 3 ,  1 )  and this 
is less than K (  1).  Although the existence of the limits defined by equation (1)  for d = 2 
has not been shown rigorously, these results suggest that ~ ( 3 ,  L )  and ~ ( 4 ,  L )  (if the 
limits exist) as well as K,,(L) are all strictly less than K ( L ) ,  for all L. In this letter we 
give a short proof of this. 

We first show that the connective constant K ~ ( L )  exists for polygons in a slit of 
width L. To do this we define the top (bottom) vertex of a polygon as the vertex 
having largest (smallest) y coordinate in the subset of vertices of the polygon having 
largest (smallest) x coordinate. We take each m-gon and each n-gon and translate in 
the x direction so that the top vertex, with coordinates (x,, y , ) ,  of the m-gon, is three 
lattice spacings to the left of the bottom vertex, with coordinates (xb, y b ) ,  of the n-gon, 
i.e. x h  = x,+3. We delete the edges (x,, y , ) - ( x , ,  y ,  - 1 )  and ( x b ,  yh)-(Xh, yb+  1 ) .  (By 
the definitions of top and bottom vertices, these edges clearly exist.) We now join the 
two polygons using a rectangular 'pad' as shown in figure 1. The resulting polygon 
has m + n + 2( L + 1) edges and each pair of m- and n-gons gives a distinct ( m  + n + 
2 ( L +  1))-gon, so that 

P m  ( L)Pn ( L )  

P n ( L ) C  c n - , ( L )  

lim n-' log c , ( ~ )  = K ( L )  

P m  + n + 2 (  L+ I )( L ) .  
In addition, by deleting an edge it is clear that 

and, since 

n - n  

(3)  

(4) 

(5)  

is known to exist (Whittington 1983), equations (3)-(5)  imply (Wilker and Whittington 
1979) that 

(6) n - e  lim n-' log p n (  L )  = K ~ (  L )  

( b )  

Figure 1. The concatenation of two polygons through a rectangular pad. 



Letter to the Editor L859 

exists with K ~ (  L )  d K (  L ) .  (Since the number of edges in a polygon is necessarily even 
n goes to infinity in equation ( 6 )  through only even values.) 

For each polygon, with bottom vertex at (xb, yb) and top vertex at (x,, y,), we 
construct a rectangle ( R )  with vertices at (xb - 1, -;), (xb - 1, L+f ) ,  (x, + 1, L + i ) ,  
(x, + 1, -4). We delete the two edges (xb, yb)-(Xb, yb+ 1) and (x,, y,)-(x,, y, - 1) and 

(xf, y, - 1)-(x, + 1, y, - 1). This yields two self- and mutually avoiding walks w, and 
w2 with their endpoints embedded in the boundary of the rectangle R. We take wI to 
be the walk joining (Xh-l ,yb+l)  and (x,+ l ,y,) .  w1 is a simple polygonal arc 
(homeomorphic to a l-ball) with its endpoints properly embedded in the boundary of 
R, which is a polygonal Jordan curve (homeomorphic to a l-sphere). Hence wI 
separates R (i.e. R -  w1 is not connected) and w2 lies entirely in one of these two 
regions of R (see, for example, Stillwell 1980). All points on the line y = L between 
(xb - 1, L )  and (x, + 1, L )  lie above or on wI so that w2 lies entirely below this line and 
is confined between or in y = 0 and y = L - 1. A similar argument establishes that w, 
also lies entirely in a slit of width L - 1. 

w1 and w 2  are self-avoiding walks whose leftmost and rightmost vertices are of unit 
degree and whose first and last edges are horizontal. Let b,( L )  be the number of such 
‘unfolded‘ walks with m edges confined in a slit of width L. The above construction 
establishes that 

add the edges (Xb,Yb)-(Xb-1,yb), (Xb,yb+l)-(Xb-1,yb+1), (Xt,Y,)-(X,+1,Y,) and 

These unfolded walks can be concatenated in pairs to form unfolded walks with L 
additional steps (using a construction on the lines of that described by Whittington 
(1983)) so that 

b m  ( L )  bn - m  ( L )  s b n +  L( L ) .  (8) 

pn(L) 4 nbn+L+l (L-  1). (9) 

Hence 

Unfolded walks in a slit of width L have the same connective constant, K ( L ) ,  as 
self-avoiding walks in a slit of width L (Whittington 1983) so that equation (9) gives 
K,(L) S K (  L -  1). But K (  L )  is a strictly monotone increasing function of L (Hammersley 
and Whittington 1985). Hence 

K o ( L )  < K ( L ) .  (10) 

The corresponding proof for a star is similar. We give the argument for f = 4 but 
this can be easily adapted to the case f =  3.  

We consider a 4-star with n edges in each branch, confined to lie in or between 
y = 0 and y = L. We can define the top and bottom vertices of a star in exactly the 
same way as for a polygon. Let the top vertex have coordinates (x,, yf )  and the bottom 
vertex have coordinates (xb, y b ) .  The star lies in, or in the boundary of, the rectangle 
R with vertices (xb, -f), (xb, L + f ) ,  (xf,  L + f ) ,  (x,, -$). There is a self-avoiding walk 
w, which is a subgraph of the union of at most two branches of the star, from (Xb, yb) 
to (xf, y,), and there is a subwalk (w’) of w which has two vertices of degree one in 
aR but no edge in dR. aw’ is properly embedded in dR and R - w’ is not connected. 
Hence there are at least two branches of the star, each of which must lie in a component 
of R - w’ (though both may be in the same component). By arguments analogous to 
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those given for the polygon case, both of these lie in a slit of width L - 1 and we have 
the inequality 

sn(4, L ) s  cn(L)2c,,(L-l) '  (11) 

lim sup(4n)-' log sn(4, L )  c f( K ( L )  + K (  L -  1)) < K (  L ) .  (12) 

so that 

n-ai 

Therefore, provided that ~ ( 4 ,  L )  exists, it is strictly less than K ( L ) .  
The corresponding result for a 3-star is 

Iimsup(3n)-'Iog s,(3, L ) ~ ~ K ( L -  ~ ) + S K ( L ) < K ( L ) .  (13) 
n-m 

Using the approach of Chee and Whittington (1987) it is easy to establish corre- 
sponding lower bounds. A subset of the 3-stars can be obtained by concatenating an 
unfolded walk with n edges and a polygon with 2(n - L )  edges, using a rectangular 
'pad' of 2L+  2 edges, similar to that shown in figure 1. The resulting graph is a tadpole 
with 2n + 2  edges in the circuit and n edges in the tail. We now delete two edges from 
the circuit to give a uniform 3-star. This construction establishes that 

lim inf(3nl-l log sn(3, L )  z ~ K ( L ) + ~ K ~ ( L ) .  (14) 
n - a  

A corresponding construction concatenating a pair of polygons gives 

lim inf (4n)-' log ~ " ( 4 ,  L )  3 K ~ ( L ) .  (15) 
n - x  

These bounds are compared to the numerical estimates of ~ ( 3 ,  L )  and ~ ( 4 ,  L )  
obtained by Chee and Whittington (1987) in table 1. The numerical values of the 
bounds were evaluated using results for K ( L )  and K ~ ( L )  from a transfer matrix 
calculation by Klein (1980). For f = 3  the lower bound at L = 3  is greater than the 
numerical estimate. The error bound quoted for the numerical estimate is only approxi- 
mate and hence, in this instance, presumably too small. At least for small L the lower 
bound for f = 3 is remarkably close to the numerical estimate. It is tempting to 
conjecture that this bound is the best possible and additional numerical results for 
larger values of L would be informative. 

This work was financially supported by NSERC of Canada. The authors would also 
like to thank A J Guttmann for helpful discussions. 

Table 1. Numerical estimates and bounds for ~ ( 3 ,  L )  and ~ ( 4 ,  K ) .  

J =  3 J = 4  

Lower Numerical Upper Lower Numerical Upper 
L bound estimate bound bound estimate bound 

1 0.1604 0.1604 0.3208 - - - 
2 0.4474 0.44*0.01 0.5932 0.3466 0.36 * 0.01 0.5652 
3 0.5919 0.57 * 0.01 0.707 0.5199 0.55 * 0.01 0.69255 
4 0.6775 0.68 f 0.01 0.7706 0.6222 - 0.7620 
5 0.7337 - 0.8109 0.6893 - 0.8052 
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